
In the electricity sector, there is a great need to protect critical information that could compromise fair electricity market operation or power grid cybersecurity. At 
the same time, grid operators and governmental entities regularly publish grid data that could potentially expose this critical information.

We assess the extent to which private grid data is exposed by public grid data by inverting ACOPF. Previous work has approached similar problems using 
techniques from game theory, graph theory, and bi-level optimization [1]. We formulate inverse optimal power flow (inverse OPF) as an optimization problem and 
solve it via gradient descent-based methods within a neural network.  
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Preliminary experiments on a 14-bus system suggest that we are able to learn all cost parameters in ! and some structural parameters in ". 

Squared error of final guesses for generator cost parameters in the scenario where all generators'
costs are unknown (lower is better). Each plotted point represents five runs over a given amount of
training data. We find that all cost parameters are identifiable with as little as 5 data points.

Inverse optimal power flow algorithm

Preliminary results (14-bus system)

Introduction

We propose inverse optimal power flow, an algorithm to assess the extent to which private power grid data is 
compromised by public data. This algorithm inverts the AC optimal power flow optimization problem used 

to schedule electricity. Using this algorithm, we are able to learn private information such as electricity 
generation costs and (to some extent) grid structural parameters on a 14-bus test case.

To compute these gradients, we first solve ACOPF via sequential quadratic 
programming [2]. That is, we:
• assume #$(&') = &'

*diag(!/)&' + !1
*&' for quadratic and affine costs !/, !1,

• linearize the power flow constraint as 3 45 4 = 6 45 at some guess 45,
and then solve the resultant QP iteratively (updating 45) until the solution converges.

At the optimum, we implicitly differentiate the KKT conditions of the ACOPF QP 
relaxation, which yields a linear equation we can solve to efficiently get gradients [3]:
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Squared error of sample structural parameters in the scenario that only one
structural parameter is unknown. (Real and imaginary parts of each structural
parameter are plotted separately.) Each plotted point represents the squared
error of the unknown parameter as ℓJKL goes to zero over all 201 data points
used. Our estimate for "MN,MO converges, but our estimate for "M,P diverges.

!̂⋆, R"⋆ = argmin
̂$, RV

ℓ &', G , W&',
XG

subject to W&',
XG = ACOPF(!̂, R", &e)

input: &'
f
, G f | h = 1,… ,k // public data

initialize: l!, R" // some initial guess
for m = 1,… , n:

compute

// update guesses if loss has not converged
if ℓJKL ≠ 0 then

update !̂ with q ̂$ℓJKL

update R" with qRVℓJKL
else

return l!, R"
end if

end for

Generator bidding curve 
parameters !

Grid structure "

Nodal power demands &e
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(linear eq. constraints, with dual variable C)

(linear ineq. constraints, with dual variable :)
(power flow constraint,
with dual variable G)

Generator power injections &'

LMPs (prices) G

solve via gradient descent

Loss (over public quantities) Loss (over public quantities)
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Private data Public dataAC optimal power flow (ACOPF) relates private and public data

Inverse 
OPF
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Main challenge: Computing qáℓ &', G , W&',
XG for each A ϵ l!, R" (required for 

computing ℓJKL). This involves gradients through the ACOPF solution since:
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