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We propose a task-based approach for 
learning probabilistic ML models in the 

loop of stochastic optimization. 

Predictive algorithms often operate within some larger 
process, but are trained on criteria unrelated to this process.

Standard image classification treats all mistakes as equal (via 0/1 loss), but 
the wrong kind of mistake could lead to undesirable driving behavior.

We train a model not (solely) for predictive accuracy, but to 
minimize the task-based objective we ultimately care about.

Introduction

?
?

?
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Standard approaches to ML in stochastic optimization are:
1) Traditional model learning: Model conditional distribution 

𝑦|𝑥 by learning distribution parameters 𝜃.

	  minimize	  
+

,−log 𝑝 𝑦 2 𝑥 2 ; 𝜃 .	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
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Drawback: Model bias in (common) non-realizable case.
2) Model-free policy optimization: Map directly from inputs 𝑥

to actions 𝑧. Forgo learning model of 𝑦.
Drawback: Data-inefficient.

We offer an intermediate approach where we both learn a 
model of 𝒚 AND adjust model parameters with respect to 𝒛.

Standard ML Approaches

Stochastic optimization makes decisions under uncertainty by 
optimizing objectives governed by a random process [2].

Given: Input-output pairs (𝑥, 𝑦) ∼ 𝒟 for real, unknown 𝒟
Output: “Optimal” actions 𝑧, by optimizing task cost 𝑓 via:
minimize

A
	  	  𝐄C,D∼𝒟[𝑓 𝑥, 𝑦, 𝑧 ]

subject	  to	  	  	  𝐄C,D∼𝒟 𝑔2 𝑥, 𝑦, 𝑧 ≤ 0,… 𝑖 = 1,… , 𝑛2UVW
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ℎ2 𝑧 = 0,…	  	  	  	  	  	  	  	  	  	  	   . 	  	  	  	  	  	  	  	  	  	  	  	  𝑖 = 1,… , 𝑛VW

E.g.: 𝑥 = pixels, 𝑦 = segmentation map, 𝑧 = vehicle path,
𝑓	  = driving quality,  𝑔, ℎ	  = constraints in physical environment

Knowing 𝒟 would enable us to choose truly optimal 𝑧⋆, but in 
reality we don’t know 𝒟… so we turn to machine learning.

Setting: Stochastic Optimization

The gradient of the objective depends on the argmin result 𝑧⋆ 𝑥; 𝜃 :

𝛿𝐿
𝛿𝜃 =

𝛿𝐿
𝛿𝑧⋆

𝛿𝑧⋆

𝛿𝜃 =
𝛿𝐿
𝛿𝑧⋆

𝛿	  argmin
A

	  𝐄D∼^(D|C;+) 𝑓 𝑥, 𝑦, 𝑧⋆ 𝑥; 𝜃

𝛿𝜃 .

To obtain the gradient, we write the KKT optimality conditions of (*).
Assuming convexity allows us to replace the general equality 
constraints  ℎ 𝑧 = 0with the linear constraints 𝐴𝑧 = 𝑏.

A point (𝑧, 𝜆, 𝜈) is a primal-dual optimal point if it satisfies
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝐄𝑔 𝑧 ≤ 0
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝐴𝑧 = 𝑏

𝜆 ≥ 0
𝜆 ∘ 𝐄𝑔 𝑧 = 0	  	  	  	  	  

	  	  	  	  	  𝛻A𝐄	  𝑓 𝑧 + 𝜆g𝛻A𝐄	  𝑔 𝑧 + 𝐴g𝜈 = 0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
where expectations are over 𝑦 ∼ 𝑝(𝑦|𝑥; 𝜃), 𝑔 is the vector of all 
inequality constraints, and the dependence on 𝑥 and 𝑦 is via 𝑓 and 𝑔.

Differentiating these equations and applying the implicit function 
yields linear equations we can solve to get the necessary Jacobians.

In practice, we use SQP to solve (*), finding 𝑧⋆ 𝑥; 𝜃 via a solution for 
fast argmin differentiation in QPs [3] and then taking derivatives 
through the quadratic approximation at this optimum.

Technical Challenge: Argmin Differentiation

We outperform both traditional model learning and model-free policy optimization in terms of task 
cost, the objective of actual interest in the closed-loop system.

(a) Inventory stock problem (b) Load forecasting/generator scheduling        (c) Price forecasting/battery arbitrage

Inventory stock problem: Order quantity 𝑧 of a product to minimize costs over stochastic demand 𝑦.
minimize

A	  ∈	  ℝ
	  𝐄D[𝑓jklmn 𝑦, 𝑧 ] = 𝐄D 𝑐p𝑧 +

1
2 𝑞p𝑧

s + 𝑐t 𝑦 − 𝑧 u +
1
2𝑞t 𝑦 − 𝑧 u

s + 𝑐v 𝑧 − 𝑦 u +
1
2𝑞v 𝑧 − 𝑦 u

s

Generator scheduling: Schedule electricity generation 𝑧 to minimize costs over stochastic demand 𝑦.
	  

minimize
A	  ∈	  ℝwx

	  𝐄D ,𝛾j 𝑦2 − 𝑧2 u + 𝛾V 𝑧2 − 𝑦2 u +
1
2 𝑧2 − 𝑦2 s

sz
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	  	  	  	  	  	  subject	  to	  	   𝑧2 − 𝑧2u7 ≤ 𝑐{|}~.

Battery arbitrage: Schedule battery charge/discharge 𝑧 to minimize costs over energy prices 𝑦.

	  minimize
A��,	  A���,	  A�����∈ℝwx

	  	  𝐄D ,𝑦2 𝑧�� − 𝑧��� 2 +
sz
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𝜆 𝑧��|�� 	  −
𝐵
2

s
+ 𝜖 𝑧�� s + 𝜖 𝑧��� s	  

Experiments
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Our task-based model outperforms:
• Traditional model-based MLE in all but

the realizable case, correcting for effects 
of model misspecification.

• Model-free policy optimizer, due to 
increased data efficiency.

While an RMSE-minimizing model 
produces “objectively” better 
predictions, our task-based model 
yields a 38.6% improvement in task 
performance over the RMSE model.

subject	  to	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑧��|��,	  2u7 = 𝑧��|��,	  2 − 𝑧���,2 + 𝛾���	  𝑧��,2
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  𝑧��|��,	  7 = 𝐵/2 ,	  	  	  0 ≤ 𝑧��|�� ≤ 𝐵
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0 ≤ 𝑧�� ≤ 𝑐��	  , 0 ≤ 𝑧��� ≤ 𝑐��� 	  

Here, 𝑦	  is inherently very 
stochastic, and our task-
based net demonstrates 
more reliable performance 
than an RMSE-minimizing net.

We propose an end-to-end approach for learning machine learning models used within stochastic 
optimization. Our experiments indicate that our task-based model learning method outperforms both 
traditional MLE and “black-box” policy-optimizing methods with respect to task cost.

Future work includes an extension of this method to stochastic learning models with multiple rounds, 
and further to model predictive control and full reinforcement learning settings.

Conclusions

Our model-based approach incorporates knowledge of the final task.

We provide a general framework for adjusting model parameters
in stochastic optimization to optimize closed-loop performance

of the resulting system.

Our method chooses parameters 𝜃 for 𝑦|𝑥 to minimize task loss:
	  minimize	  

+
𝐿 𝜃 = 𝐄C,D∼𝒟[𝑓 𝑥, 𝑦, 𝑧⋆(𝑥; 𝜃) ]

where 𝑧⋆(𝑥; 𝜃) are the optimal actions w.r.t. our predictions, i.e.
𝑧⋆ 𝑥; 𝜃 = argmin

A
	  𝐄D∼^(D|C;+) 𝑓 𝑥, 𝑦, 𝑧⋆ 𝑥; 𝜃 	  	  	  	  	  	  (∗)

(with constraints omitted above for simplicity of illustration).

Algorithm

input: 𝒟	   // ability to sample from true, unknown distribution 
initialize: 𝜃 // initial distribution parameters 

for 𝑡 = 1,…𝑇	  do
sample 𝑥, 𝑦 ∼ 𝒟
compute 𝑧⋆ 𝑥; 𝜃 via Equation (*) (with constraints)

// step in violated constraint or objective
if ∃𝑖 s.t. 𝑔2 𝑥, 𝑦, 𝑧⋆ 𝑥; 𝜃 > 0 then

update 𝜃 with 𝛻+𝑔2 𝑥, 𝑦, 𝑧⋆ 𝑥; 𝜃
else

update 𝜃 with 𝛻+𝑓(𝑥, 𝑦, 𝑧⋆ 𝑥; 𝜃 )
end if

end for

Our Method
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Hyperparameters Task	  cost
%	  improvement

𝛌 𝛜 RMSE net Task-‐based	  net
(our	  method)

0.1 0.05 -‐1.45 + 4.67 -‐2.92	  + 0.30-‐ 102
1 0.5 4.96	  + 4.85 2.28	  + 2.99 54
10 5 131.08	  + 144.86 95.88	  + 29.83 27
35 15 172.66	  + 7.3800 169.84	  + 2.1600 2

Bengio [1] uses task-based learning in a deterministic setting by 
tuning a financial price prediction model based on returns from 
a hedging strategy that employs it. We extend this work to a 
stochastic optimization setting, and propose a general 
procedure for task-based learning in this domain.

Related Work

(our method)


