

Schc

We propose a task-based approach for learning probabilistic ML models in the loop of stochastic optimization.

Introduction

Predictive algorithms often operate within some larger process, but are trained on criteria unrelated to this process.

Standard image classification treats all mistakes as equal (via 0/1 loss), b the wrong kind of mistake could lead to undesirable driving behavior.

We train a model not (solely) for predictive accuracy, but to minimize the task-based objective we ultimately care about.

Related Work

Bengio [1] uses task-based learning in a deterministic setting tuning a financial price prediction model based on returns fro a hedging strategy that employs it. We extend this work to a stochastic optimization setting, and propose a general procedure for task-based learning in this domain.

Setting: Stochastic Optimization

Stochastic optimization makes decisions under uncertainty optimizing objectives governed by a random process [2].

<u>Given</u>: Input-output pairs $(x, y) \sim \mathcal{D}$ for real, unknown \mathcal{D} <u>Output</u>: "Optimal" actions *z*, by optimizing task cost *f* via:

minimize
$$\mathbf{E}_{x,y\sim\mathcal{D}}[f(x,y,z)]$$

subject to $\mathbf{E}_{x,y\sim\mathcal{D}}[g_i(x,y,z)] \le 0$, $i = 1, ..., n_{ineq}$ $h_i(z) = 0,$ $i = 1, ..., n_{eq}$

E.g.: x = pixels, y = segmentation map, z = vehicle path,f = driving quality, g, h = constraints in physical environmen

Knowing \mathcal{D} would enable us to choose truly optimal z^* , but in reality we don't know \mathcal{D} ... so we turn to machine learning.

Standard ML Approaches

Standard approaches to ML in stochastic optimization are:

Traditional model learning: Model conditional distributio y|x by learning distribution parameters θ .

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{m} -\log p(y^{(i)} | x^{(i)}; \theta).$$

Drawback: Model bias in (common) non-realizable case.

Model-free policy optimization: Map directly from inputs : to actions z. Forgo learning model of y. Drawback: Data-inefficient.

We offer an intermediate approach where we both learn a model of y AND adjust model parameters with respect to z.

[1] Bengio, Y. (1997). Using a financial training criterion rather than a prediction criterion. International Journal of Neural Systems, 8(04), 433-443. [2] Shapiro, A., & Philpott, A. (2007). A tutorial on stochastic programming. Manuscript. Available at www2.isye.gatech.edu/ashapiro/publications.html. [3] Amos, B. & Kolter, J.Z. (2017). OptNet: Differentiable Optimization as a Layer in Neural Networks. Proceedings of the 34th International Conference on Machine Learning, in PMLR 70:136-145 This work was supported by the NSF GRFP under Grant No. DGE1252522, as well as the Department of Energy Computational Science Graduate Fellowship.

based End-to-end Model Lea Priya L. Donti,*,1,2 Brandon ool of Computer Science ² Dept. of Enginee * pdonti@cmu.edu https://github		
	Our model-based approach incorporates knowledge of t	
	We provide a general framework for <i>adjusting model</i> in stochastic optimization to <i>optimize closed-loop p</i> of the resulting system.	
	Our method chooses parameters θ for $y x$ to minimize to	
	$\underset{\theta}{\text{minimize } L(\theta) = \mathbf{E}_{x,y\sim\mathcal{D}}[f(x,y,z^{*}(x;\theta))]$	
	where $z^*(x; \theta)$ are the optimal actions w.r.t. our prediction	
\ +	$z^{\star}(x;\theta) = \operatorname{argmin}_{z} \mathbf{E}_{y \sim p(y x;\theta)} [f(x, y, z^{\star})]$	
Jul	(with constraints omitted above for simplicity of illustrat	
,	Algorithm	
	input: \mathcal{D} // ability to sample from true, unknown disinitialize: θ // initial distribution parameters	
g by om	for $t = 1,, T$ do sample $(x, y) \sim D$ compute $z^*(x; \theta)$ via Equation (*) (with constraints)	
	// step in violated constraint or objective if $\exists i$ s.t. $g_i(x, y, z^*(x; \theta)) > 0$ then update θ with $\nabla_{\theta} g_i(x, y, z^*(x; \theta))$	
by	else update θ with $\nabla_{\theta} f(x, y, z^*(x; \theta))$ end if end for	
	Technical Challenge: Argmin Differe	
!	The gradient of the objective depends on the argmin res	
^+	$\frac{\delta L}{\delta \theta} = \frac{\delta L}{\delta z^{\star}} \frac{\delta z^{\star}}{\delta \theta} = \frac{\delta L}{\delta z^{\star}} \frac{\delta \operatorname{argmin} \mathbf{E}_{y \sim p(y x;\theta)} [f(x, y, z^{\star})]}{\delta \theta}$	
n	To obtain the gradient, we write the KKT optimality cond Assuming convexity allows us to replace the general equ constraints $h(z) = 0$ with the linear constraints $Az = b$.	
	A point (z, λ, v) is a primal-dual optimal point if it satisfie	
on	$\mathbf{E}g(\mathbf{z}) \leq 0$ $Az = b$ $\lambda \geq 0$	
	$\lambda \circ \mathbf{E}g(z) = 0$ $\nabla_{z}\mathbf{E} f(z) + \lambda^{T}\nabla_{z}\mathbf{E} g(z) + A^{T}\nu = 0$ where expectations are over $y \sim p(y x;\theta)$, g is the vector inequality constraints, and the dependence on x and y is	
X	Differentiating these equations and applying the implicit yields linear equations we can solve to get the necessary	
a	In practice, we use SQP to solve (*), finding $z^*(x; \theta)$ via a fast argmin differentiation in QPs [3] and then taking der	

through the quadratic approximation at this optimum.

arning in Stochastic Optimization **Amos¹**, and J. Zico Kolter¹ ring & Public Policy (Carnegie Mellon University)

.com/locuslab/e2e-model-learning

Future work includes an extension of this method to stochastic learning models with multiple rounds, and further to model predictive control and full reinforcement learning settings.

Experiments

Carnegie

$$\frac{B}{2} \Big\|^{2} + \epsilon \|z_{\text{in}}\|^{2} + \epsilon \|z_{\text{out}}\|^{2}$$

sk-based net	% improvement
our method)	
2.92 <u>+</u> 0.30	102
2.28 <u>+</u> 2.99	54
5.88 <u>+</u> 29.83	27
9.84 <u>+</u> 2.16	2

 $z_{\text{state, }i+1} = z_{\text{state, }i} - z_{\text{out,}i} + \gamma_{\text{eff}} z_{\text{in,}i}$

than an RMSE-minimizing net.

traditional MLE and "black-box" policy-optimizing methods with respect to task cost.